Soal Persamaan dan pertidaksamaan rasional dan irasional
Dapatkan link
Facebook
X
Pinterest
Email
Aplikasi Lainnya
Contoh soal persamaan dan pertidaksamaan rasional
Persamaan dan pertidaksamaan rasional
Persamaan rasional didefinisikan sebagai persamaan suatu pecahan dengan satu atau lebih variabel (x) pada pembilang atau penyebutnya. Sedangkan pertidaksamaan rasional adalah persamaan pecahan dengan notasi kurang dari, lebih dari, kurang dari sama dengan dan lebih dari sama dengan.
Untuk bisa menjawab soal persamaan rasional, kemampuan yang mesti kita miliki adalah perkalian silang dan pindah ruas bilangan. Seperti kita ketahui ketika kita pindah ruas bilangan positif dari kanan ke kiri maka tanda positif menjadi negatif dan sebaliknya.
Sedangkan pemecahan soal pertidaksamaan rasional dapat dilakukan dengan langkah-langkah dibawah ini:
Tentukan syarat pertidaksamaan.
Tentukan pembuat nol
Buat garis bilangan
Tentukan interval yang memenuhi berdasarkan garis bilangan
Contoh soal persamaan rasional
Contoh soal 1
Tentukan nilai x yang memenuhi persamaan rasional
x – 1
2
–
3x
4
= 0
Penyelesaian soal
Untuk menjawab soal ini kita gunakan metode pindah ruas dan kali silang. Ketika memindahkan angka atau variabel dari satu ruas ke ruas lainnya kita ganda negatif menjadi positif atau sebaliknya. Jadi jawaban soal diatas sebagai berikut:
Tentukan himpunan penyelesaian dari pertidaksamaan rasional dari
x – 4
x – 1
≥ 0
Penyelesaian soal
Untuk menjawab soal ini tentukan terlebih dahulu syarat pertidaksamaan yaitu x – 1 ≠ 0 atau x ≠ 1.
Selanjutnya kita buat pembuat nol sehingga diperoleh hasil sebagai berikut:
x – 4 = 0 maka x = 4
x – 1 = 0 maka x = 1
Kemudian kita buat garis bilangan sebagai berikut:
Garis bilangan pertidaksamaan rasional soal nomor 1
Untuk menentukan tanda + atau – pada garis bilangan diatas kita ambil satu angka yang lebih kecil dari 1 (misalkan 0). Angka 0 kita subtitusi ke (x – 4)/(x – 1) maka didapat (0 – 4)/(0 – 1) = + 4. Jadi tanda garis bilangan di sebelah kiri 1 adalah + lalu kita buat selang seling untuk tanda garis bilangan selanjutnya.
Karena notasi pertidaksamaan lebih dari sama dengan maka himpunan penyelesaian (x – 4)/(x – 1) terletak pada garis bilangan bertanda + atau pada interval x < 1 atau x ≥ 4.
Contoh soal 2
Tentukan himpunan penyelesaian dari pertidaksamaan rasional
2x + 4
x – 2
≺ 0
Penyelesaian soal
Syarat pertidaksamaan soal nomor 2 adalah x – 2 ≠ 0 atau x ≠ 2. Kemudian kita buat pembuat nol sehingga diperoleh:
2x + 4 = 0 maka x = -2
x – 2 = 0 maka x = 2
Garis bilangan pertidaksamaan rasional soal nomor 2
Karena notasi pertidaksamaan soal ini adalah kurang dari maka interval himpunan penyelesaian berada di tanda negatif atau -2 < x < 2.
Contoh soal 3
Tentukan himpunan penyelesaian dari pertidaksamaan rasional
x2 – 4x + 4
x + 1
≺ 0
Penyelesaian soal
Pembilang pada soal diatas kita faktorkan sehingga bentuk soal menjadi:
(x – 2) (x – 2)
x + 1
Syarat yang berlaku pertidaksamaan diatas adalah adalah x + 1 ≠ 0 atau x ≠ -1.
Selanjutnya kita tentukan pembuat nol sebagai berikut:
(x – 2) (x – 2) = 0 maka diperoleh x = 2.
x + 1 = 0 maka x = – 1
Selanjutnya kita buat garis bilangan sebagai berikut:
Untuk x > 2 kita ambil angka 3 lalu subtitusi ke x2 – 4x + 4/x + 1 maka diperoleh 32 – 4 . 3 + 4/3 + 1 = + 1/4. Jadi tanda garis bilangan setelah 2 adalah positif.
Untuk interval -1 < x < 2 kita angka nol lalu subtitusi seperti poin diatas sehingga didapat 02 – 4 . 0 + 4/0 + 1) = + 4. Jadi tanda garis bilangan diantara – 1 hingga 2 adalah negatif.
Untuk interval x < -1 kita ambil angka -2 lalu subtitusi seperti 2 poin diatas maka hasilnya – 8. Jadi tanda garis bilangan sebelum -1 adalah negatif. Jika digambarkan seperti dibawah ini.
Contoh soal persamaan irasional
Contoh soal 1
Tentukan nilai x yang memenuhi persamaan irasional √ x – 1 = x – 3
Penyelesaian soal
Untuk menjawab soal 1 kita tentukan dahulu syarat agar persamaan irasional berlaku yaitu:
x – 1 ≥ 0 atau x ≥ 1.
x – 3 ≥0 atau x ≥ 3.
Ambil syarat yang terbesar sehingga syarat yang berlaku pada persamaan irasional soal nomor 1 adalah x ≥ 3.
Selanjutnya kita hilangkan tanda akar dengan cara mengkuadratkan kedua ruas persamaan seperti dibawah ini:
( √ x – 1 )2 = (x – 3)2
(x – 1) = x2 – 6x + 9
x2 – 6x – x + 9 + 1 = 0
x2 – 7x + 10 = 0
(x – 2) (x – 5) = 0
x = 2 atau x = 5
Karena syarat yang berlaku pada persamaan nomor 1 adalah x ≥ 3 maka nilai x yang memenuhi adalah x = 5. Jadi soal nomor 1 jawabannya adalah x = 5.
Untuk memeriksa apakah jawaban ini benar atau salah maka caranya cukup mudah yaitu dengan subtitusi x = 5 ke persamaan irasional nomor 1:
√ x – 1 = x – 3
√ 5 – 1 = 5 – 3
√ 4 = 2
2 = 2
Kita lihat jawabannya sesuai.
Jika x = 2 kita subtitusi ke persamaan maka hasilnya sebagai berikut:
√ 2 – 1 = 2 – 3
1 = – 1.
Kita lihat hasilnya tidak sesuai.
Contoh soal 2
Tentukan nilai x yang memenuhi persamaan irasional √ x2 – 9 = √ x + 3 .
Penyelesaian soal
Sama seperti nomor 1, kita tentukan dahulu syarat persamaan irasional yaitu:
x2 – 9 ≥ 0 atau x2 ≥ 9 → x ≤ -3 atau x ≥ 3.
x + 3 ≥ 0 atau x ≥ -3.
Kita lihat syarat pertama x ≤ -3 dan yang kedua x ≥ -3 jadi syarat yang berlaku adalah x = -3 dan x ≥ 3.
Setelah itu kita kuadratkan kedua ruas persamaan irasional sehingga didapat:
(√ x2 – 9 )2 = ( √ x + 3 )2.
x2 – 9 = x + 3
x2 – x – 9 – 3 = 0
x2 -x – 12 = 0
(x – 4) (x + 3) = 0
x = 4 atau x = -3
Berdasarkan syarat kedua nilai x memenuhi sehingga jawaban soal ini adalah x = – 3 dan x = 4.
Contoh soal pertidaksamaan irasional
Contoh soal 1
Tentukan himpunan penyelesaian dari pertidaksamaan irasional √ x – 5 < 2.
Penyelesaian soal
Untuk menjawab soal ini kita tentukan terlebih dahulu syarat agar pertidaksamaan irasional berlaku yaitu:
x – 5 ≥ 0
x ≥ 5
Selanjutnya kita kuadratkan kedua ruas pertidaksamaan irasional sehingga didapat:
(√ x – 5 )2 < 22.
x – 5 < 4
x < 4 + 5 atau x < 9
Lalu kita buat garis bilangan untuk menentukan irisan antara syarat x ≥ 5 dan x < 9.
Irisan pertidaksamaan irasional nomor 1
Berdasarkan gambar diatas maka himpunan pertidaksamaan irasional nomor 1 adalah 5 ≤ x < 9.
Contoh soal 2
Tentukan himpunan penyelesaian dari pertidaksamaan irasional √ x – 1 > 2
Penyelesaian soal
Syarat yang berlaku pada pertidaksamaan irasional diatas sebagai berikut:
x – 1 ≥ 0.
x ≥ 1.
Kemudian kita kuadratkan pertidaksamaan diatas sehingga didapat:
( √ x – 1 )2 > 22
x – 1 > 4
x > 4 + 1
x > 5
Jadi himpunan penyelesaian pertidaksamaan ini adalah x > 5.
Halo perkenalkan nama saya Hanan Mulya, saya berusia 16 dan lulusan smp angkatan 2020, ya benar,,, bisa dibilang veteran untuk seorang yang lulusan 2020 tetapi daftar SMA paada tahun 2021. banyak kejadian rumit dari sepanjang satu tahun tersebut. Yang di mulai pada Februari tahun 2020 yang dimana COVID-19 untuk pertama kali mewabah indonesia .Yang mengakibatkan saya sebagai siswa tahun ketiga SMP terpaksa untuk tidak melaksanakan UN(ujian nasional). Untuk waktu yang lama saya memepersiap kan diri dengan LES, PM, tryout dll untuk pesiapan UN... dan alhasil UN pada tahun itu di tiadakan oleh pemerintah. Dan ini benar benar berdampak kepada pemilihan sekola ke jenjang selanjutnya(PPDB).. Saya sebagai siswa dengan umur muda pada tahunnya dan nilai rata-rata rapor yang "seadanya", itu membuat saya terpental... jangan kan hilang dari urutan PPDB,nama saya bahkan tidak sempat untuk berada pada urutan tersebut, sanking mudanya umur saya dan membuat saya tidak bisa bersaing pada PPDB ...
Pengertian perbandingan trigonometri perbandingan trigonometri adalah perbandingan panjang sisi-sisi segitiga. Nilai perbandingan trigonometri tersebut dihitung menggunakan sudut lancip (kurang dari 90º). Agar memudahkan perhitungan, maka digunakan sudut siku-siku. Sudut siku-siku memiliki tiga sudut dalam dengan jumlah 180º. Adapun sudut sikunya memiliki besar 90º, sehingga dua sudut lainnya pasti memiliki sudut lancip (kurang dari 90º). Jenis-jenis perbandingan trigonometri Melansir dari Mathematics LibreTexts , ada enam perbandingan atau rasio trigonometri yang menghubungkan sisi-sisi segitiga siku-siku dengan sudut-sudut dalam segitiga. Enam perbandingan tersebut adalah sinus (sin), cosinus (cos), tangen (tan), cosecan (cosec), secan (sec), dan juga cotangen (cot). Perbandingan trigonometri pada segitiga siku-siku Pada gambar segitiga ABC, terlihat sudut lancip yang akan dibandingkan dengan perbandingan trigonometrinya adalah sudut .
Komentar
Posting Komentar